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Abstract. While humans forget gradually, highly distributed connectionist networks forget

catastrophically: newly learned information often completely erases previously learned information.

This is not just implausible cognitively, but disastrous practically. However, it is not easy in

connectionist cognitive modelling to keep away from highly distributed neural networks, if only

because of their ability to generalize. A realistic and effective system that solves the problem of

catastrophic interference in sequential learning of ‘static’ (i.e. non-temporally ordered) patterns has

been proposed recently (Robins 1995, Connection Science, 7: 123–146, 1996, Connection Science,

8: 259–275, Ans and Rousset 1997, CR Académie des Sciences Paris, Life Sciences, 320: 989–997,

French 1997, Connection Science, 9: 353–379, 1999, Trends in Cognitive Sciences, 3: 128–135,

Ans and Rousset 2000, Connection Science, 12: 1–19). The basic principle is to learn new external

patterns interleaved with internally generated ‘pseudopatterns’ (generated from random activation)

that reflect the previously learned information. However, to be credible, this self-refreshing

mechanism for static learning has to encompass our human ability to learn serially many temporal

sequences of patterns without catastrophic forgetting. Temporal sequence learning is arguably more

important than static pattern learning in the real world. In this paper, we develop a dual-network

architecture in which self-generated pseudopatterns reflect (non-temporally) all the sequences of

temporally ordered items previously learned. Using these pseudopatterns, several self-refreshing

mechanisms that eliminate catastrophic forgetting in sequence learning are described and their

efficiency is demonstrated through simulations. Finally, an experiment is presented that evidences a

close similarity between human and simulated behaviour.

Keywords: artificial neural networks, temporal sequence learning, catastrophic forgetting,

self-refreshing memory.

1. Introduction
Humans simply forget; many connectionist networks, on the other hand, forget
catastrophically. Specifically, the broad and widely used class of highly distributed
connectionist networks—in particular, multi-layer networks trained with the backpro-
pagation algorithm—suffer from catastrophic interference (McCloskey and Cohen
1989, Ratcliff 1990), which occurs when newly learned information completely
erases previously learned information. This is not just implausible cognitively, but
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disastrous for practical applications, which is why numerous authors over the last
decade and a half have developed ways to overcome this problem (Hetherington and
Seidenberg 1989, McCloskey and Cohen 1989, Kortge 1990, Ratcliff 1990, Lewan-
dowsky 1991, 1994, Murre 1992, French 1992, 1994, 1997, McRae and Hetherington
1993, Lewandowsky and Li 1995, McClelland et al. 1995, Robins 1995, 1996, Sharkey
and Sharkey 1995, Ans and Rousset 1997, 2000, Robins and McCallum 1998, 1999,
French et al. 2001 and others; for a review, see French 1999). The heart of the
problem is that the very property—a single set of weights to encode information—
that gives connectionist networks their remarkable abilities to generalize and to have
a gradual drop off in performance in the presence of incomplete information is also
the root cause of catastrophic interference. When such a system learns a new set of
items, a large majority of its weights that were adjusted for previously learned items
will be modified, which frequently results in a severe loss of the old information.
This is the ‘sensitivity–stability dilemma’ (Hebb 1949) or ‘stability–plasticity
dilemma’ (Grossberg 1987, Carpenter and Grossberg 1988). While it is true that
memory models that use non-overlapping, or sparsely distributed, representations
face this dilemma to a considerably lesser extent (e.g. Hintzman 1986, Grossberg
1987, Kanerva 1988, Kruschke 1992, 1993, Ans et al. 1998), good generalization
often requires a highly distributed system; and along with this high degree of distri-
bution comes catastrophic interference.

Networks that suffer from catastrophic interference obviously cannot learn patterns
sequentially. This is why backpropagation networks must learn collections of patterns
‘concurrently’, i.e. modifying the network’s weights a very small amount for each
item and making many passes through the training set to settle gradually on an appropri-
ate set of weights for the entire set of items. Numerous ways are known to achieve
sequential learning in these networks, the simplest of which is to ‘rehearse’ the old
items as new learning occurs. In other words, when new information is presented to
the network, various amounts of the previously learned information are mixed in with
the new information, and catastrophic interference is effectively eliminated. This sol-
ution, however, requires the unrealistic assumption of permanent access to all patterns
on which the network was previously trained. Various authors (Robins 1995, 1996,
Ans and Rousset 1997, 2000, French 1997, 1999) have developed systems that rehearse
on pseudo-episodes (or pseudopatterns), rather than on the real items that were learned
previously. The basic principle of this mechanism is to learn new external patterns inter-
leaved with internally generated pseudopatterns. A set of these patterns reflects (but is
not identical to) the previously learned information. It has now been established that this
pseudopattern rehearsal method does indeed eliminate catastrophic forgetting, thereby
allowing effective sequential pattern learning.

A serious problem remains, however, which is: cognition not only involves being able
to learn sequentially a series of ‘static’ (i.e. non-temporally ordered) patterns without
interference, but, of equal importance, also requires us to be able to learn serially
many temporal sequences of patterns, one after another. In other words, while it is
important to be able to learn sequentially to recognize a series of faces, much of what
we do consists of mastering the serial order of pattern sequences. This includes every-
thing from starting the car in the morning to baking a loaf of bread, from getting
dressed to answering the phone. In fact, virtually everything we do involves, in one
way or another, sequences of events in time. So, how can we get a network to learn
several temporal sequences without catastrophic interference? We shall present an
approach that overcomes this problem using a technique closely related to the original
pseudopattern approach (cf. early results presented in Ans et al. 2002).
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A remarkable result of this paper is that, in order for the network to learn multiple tem-
poral sequences, interleaving pseudo-sequences with the new sequences to be learned
simply does not work. Rather, once a network has learned a particular sequence, it
may be used to generate pseudopatterns that collectively embody information about
the entire sequence (or set of sequences) that was learned. In other words, when learning
a new sequence, simple rehearsal with these ‘non-ordered’ pseudopatterns will prevent
catastrophic forgetting of the previously learned sequence(s).

The network on which the dual-network architecture described in this paper is based is
a modified version of the well-known simple recurrent network (SRN) proposed by
Elman (1990) for temporal sequence learning. The proposed modification to the standard
SRN involves adding hidden-to-input layer connections in order to create an autoasso-
ciative part required by the reverberation process introduced by Ans and Rousset
(1997), a process that greatly increased the effectiveness of pseudopatterns in eliminat-
ing catastrophic forgetting. We call the modified network a ‘reverberating SRN’ (here-
after, RSRN). The addition of an autoassociative part to a SRN was first proposed in a
different framework by Maskara and Noetzel (1992, 1993), who called their network an
‘autoassociative recurrent network’ (AARN). The aim was to improve the prediction
ability of SRNs, and it has been shown that AARNs can do sequence-learning tasks
that cannot be done with a standard SRN (Maskara and Noetzel 1993, Cleeremans
and Destrebecqz 1997).

We coupled two RSRNs to create a dual-network architecture that is similar to the
model originally developed by Ans and Rousset (1997, 2000). Among other models
of temporal sequence learning (e.g. Jordan 1986, Ans 1990, Reiss and Taylor 1991,
Ans et al. 1994), the SRN model was chosen because it is the most widely used.

The remainder of this paper is organized as follows. We shall briefly review the stan-
dard dual-network pseudopattern solution to the problem of catastrophic forgetting in
static pattern learning. We go on to show why the use of pseudo-sequences to solve
this problem in the framework of multiple sequence learning is inappropriate. We then
demonstrate that simple pseudopatterns instead of pseudo-sequences can be used to over-
come the problem of multiple sequence learning. We discuss how these techniques can be
used to learn long sequences by learning short sub-sequences of the long sequence, and
we discuss a number of possible ways in which the self-refreshing mechanism could be
generalized. Further, we check the robustness of this mechanism with regard to sequence
complexity. We do this by showing that the mechanism works without difficulty on so-
called second-order conditional sequences (or SOCs, Cohen et al. 1990, Reed and
Johnson 1994), complex sequences of items in which no single item ever deterministi-
cally predicts its successor. Finally, to sustain the self-refreshing process, we carried
out a behavioural experiment with human subjects in order to track in detail the temporal
course of retroactive interference during sequence learning. These results were then
compared with those from the simulation with the dual-network RSRN.

2. Overcoming catastrophic interference with pseudopatterns
Before discussing the dual-network RSRN architecture that is the subject of this paper,
we need briefly to describe what pseudopatterns are and how they can be used to reduce
catastrophic interference.

2.1. Simple pseudopatterns
Assume we have a three-layer feedforward network with k binary input units and m binary
output units. The network learns a number of patterns drawn from some distribution.
Thereafter, these patterns are no longer available. How can one determine, even
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approximately, what the network has learned? Answer: by ‘bombarding’ the input of the
network with random binary vectors (i.e. vectors consisting of 0s and 1s, each with a prob-
ability of 0.5 of being chosen) of length k and collecting the associated output vectors of
length m. Each input–output pair of vectors produced in this way will constitute a pseu-
dopattern that will be a reflection of the function previously learned by the network.

2.2. How pseudopatterns are used to reduce catastrophic interference
The basic idea is as follows (Robins 1995). The network learns a first set of patterns, fPig.
Then before it begins to learn the second set of patterns, fQig, noise is fed through the
network to produce a set of pseudopatterns, fcig. These pseudopatterns are added to
the new patterns to be learned and the network continues to train on this larger set
until all of the new patterns fQig are below criterion. When the network is tested on
the originally learned patterns, fPig, it has not forgotten them catastrophically.

Where are the internally generated pseudopatterns stored so that they can be inter-
leaved with the new patterns? One answer is to generate them on the move in a separate
network (Ans and Rousset 1997, 2000, French 1997). Let us consider one way that a
single new pattern, Q, might be learned in this dual-network model. We assume that
new patterns are learned by one network (NET 1), while previously learned patterns
are stored in another network (NET 2). NET 1 learns Q as follows:

(i) pattern Q is input to NET 1, which modifies its weights once.
(ii) Noise is input to NET 2, which generates a pseudopattern and

(iii) this pseudopattern is input to NET 1, which modifies its weights once.
(iv) If Q has been learned to criterion, stop; otherwise go to (i).

We call this the interleaving phase. Once the output error for pattern Q has dropped
below criterion, we transfer this information to NET 2 as follows:

(i) noise is input to NET 1, which generates a pseudopattern and
(ii) this pseudopattern is input to NET 2, which modifies its weights once.

(iii) Go to (v). Loop X times, for some predetermined value of X.

We call this phase, when information is transferred to NET 2, the transfer phase.

2.3. ‘Reverberating’ feedforward networks
A reverberating feedforward network (RFN) is a standard three-layer backpropagation
network that integrates an autoassociative processing constraint (Ans and Rousset
1997, 2000). This architecture can be visualized in two equivalent manners. In the first
(see figure 1(a)), the reverberating (i.e. autoassociative) part is shown in an ‘unfolded’
manner, which emphasizes precisely how the learning algorithm works, at the expense
of an intuitive grasp of the reverberation. In this visualization, the output layer is
divided into the output nodes of the autoassociative part (on the left in figure 1(a)) and
the nodes for the targets of the patterns to be learned (on the right in the figure). On
the other hand, the second way of visualizing the architecture (see figure 1(b)) empha-
sizes the crucial reverberating part of the network, but renders the learning algorithm
somewhat more difficult to understand.

Consider figure 1(a) and assume the network is to learn a pattern P: I!T consisting of
an input I and a target T. I is presented on input and is sent through the network to the
output layer. For all of the nodes in the output layer, an error is calculated. For the ‘auto-
associative’ output nodes, the error is based on the difference between the network
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output and the original input I, whereas for the ‘target’ nodes, this error is based on the
difference between the ‘heteroassociative’ output and the desired target T. The errors
associated with both the ‘autoassociative’ and the ‘target’ output nodes are then backpro-
pagated through the network in order to change the network’s weights.

2.4. ‘Attractor’ pseudopatterns and their generation in RFNs
To generate pseudopatterns in an RFN, a random input ic is presented to the input
layer of the network and fed through to the output layer. The activation values of the

Figure 1. (a) The RFN architecture integrates an autoassociative processing constraint into a

standard backpropagation network (large arrows represent full connectivity with modifiable

weights). Here the emphasis is on the learning algorithm. The network is shown learning

a pattern P: Input ! Target. (b) An equivalent visualization of the RFN architecture

emphasizing the input–hidden layer reverberation. It is crucial to note that the updating of

the hidden-to-input weights depends not only on the autoassociative error between the

original input and the reverberated input, but also on the difference between the network’s

actual output and the target. As above, the network is shown learning a pattern, P:

Input ! Target.
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‘autoassociative’ nodes in the output layer (nodes on the left of the output layer in figure
1(a)) constitute a new input, i0c, which is then sent through the network (the activation
values on the ‘target’ nodes in the output layer are ignored). This produces a pattern
of activation on the ‘autoassociative’ output nodes, i00c, which is then presented to the
input nodes of the network, and so on. After a number R of reverberating cycles
through the network, a final ‘reverberated’ input iR

c is sent through the network and
the activation vector of all the output nodes (the ‘autoassociative’ and the ‘target’
output nodes), oc, is used to produce a pseudopattern C: iR

c ! oc. The advantages of
using an autoassociative part with a feedforward-backpropagation network have been
shown elsewhere (Ans and Rousset 1997, 2000). Suffice it to say that the reverberation
process transforms a pure random input ic into an attractor of the entire system, c. As
such, the ‘attractor’ pseudopattern produced provides a much better reflection of the old
patterns than a pseudopattern produced from simple random noise on input. It is this
reverberation technique that is largely responsible for the power of this technique,
whether in standard feedforward or simple recurrent networks.

2.5. Simple recurrent networks
The simple recurrent network (SRN, see Elman 1990) is designed to learn temporally
ordered sequences of patterns S(0), S(1), . . . , S(t), . . . , S(n), where t is the time par-
ameter. The basic idea is that, in order to learn an ‘ambiguous’ sequence (e.g. one
that contains two identical patterns), it is necessary to include context to distinguish
the different parts of the sequence in which the identical items are found. For this,
‘context’ units are added to the input (see figure 2). For a given item S(t) in the sequence,
we input not only S(t) to the network, but also H(t 2 1), which is the hidden layer acti-
vation vector associated with S(t 2 1). The standard backpropagation algorithm is used
to change the weights of the SRN. For the first learning iteration (i.e. S(0) ! S(1)), the
context units on the input layer are all initialized to 0.5. Hereafter, this initializing
context pattern will be referred to as the ‘neutral context’.

Figure 2. A standard SRN network that is designed to learn a sequence S(0),

S(1), . . . , S(t), . . . , S(n). At each time t, the relation between item S(t) and the associated

target item S(t þ 1) is learned along with the context H(t 2 1), a copy of the hidden layer

activation from time t 2 1 when the network was learning the previous association

S(t 2 1) ! S(t).
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2.6. Reverberating simple recurrent networks
A RSRN (see figure 3) works very much like a standard SRN. Just as the RFN net-
work involves adding ‘autoassociative’ nodes to the output layer of a BP network, a
reverberating SRN involves adding ‘autoassociative’ nodes to the output layer of
a standard SRN. The full input to the network consists of the ‘standard’ input, i.e.
the input from the sequence item S(t), and the ‘context’ input, H(t 2 1), which is
the activation vector of the hidden layer associated with the previous item in the
sequence, S(t 2 1).

2.7. ‘Attractor’ pseudopattern generation in a RSRN
The principle of pseudopattern generation in a RSRN is similar to that used in a RFN. A
random input ic is presented to the input layer of the network (i.e. random binary values,
with 0.5 probability, for both standard input units and context units) and fed through the
network to the output layer. Only the activation values of the ‘autoassociative’ nodes in
the output layer (see figure 3) are used to constitute a new input, i0c (as in the RFN, the
activation values on the ‘target’ nodes in the output layer are ignored). This vector i0c is
then fed through the network in order to produce a pattern of activation on the autoas-
sociative output nodes, i00c. This vector i00c is then presented to the input nodes of the
network, and so on. In a manner exactly analogous to pseudopattern generation in the
RFN, after a number R of these ‘reverberating’ cycles through the network, the final
‘reverberated’ input iR

c is sent through the network. The activation vector on all output
nodes (‘autoassociative’ and ‘target’ output nodes), oc, is used to produce a pseudopat-
tern C: iR

c ! oc.
Crucially, once the RSRN has learned a sequence of items, a set of pseudopatterns

generated as above reflects the entire learned sequence(s). The larger this set of pseudo-
patterns, the better it will reflect the previously learned sequence(s). This is precisely
why pseudopatterns are able to eliminate catastrophic forgetting of the old sequence
when a new sequence is learned.

Figure 3. A reverberating SRN. This architecture can also be visualized as in figure 1(b) to

emphasize the input reverberation between the input and hidden layer.
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3. A dual-network architecture with self-refreshing memory to overcome
catastrophic forgetting in temporal sequence learning

3.1. An overview of the basic dual-network architecture
Ans and Rousset (1997, 2000) proposed a reverberating dual-network architecture with a
self-refreshing memory to avoid catastrophic forgetting in static pattern learning. It is
necessary to describe this basic model in order to show how an analogous architecture
for multiple sequence learning can overcome catastrophic forgetting in temporal
sequence learning.

The basic dual-network architecture consists of two coupled RFNs (see figure 1(a)),
denoted NET 1 and NET 2. NET 1 is the primary network that interfaces with the
environment and that learns the new patterns. The secondary network, NET 2, is a
‘storage’ network because information initially learned in NET 1 will ultimately be
transferred to NET 2. This secondary network has the same input layer and output
layer structure as the primary network. (The two networks can, theoretically, have differ-
ent numbers of hidden layers of different sizes. For the sake of simplicity, the two net-
works described in this paper are identical.) The basic idea underlying the operation of
this system is the following. First, suppose that some previously learned information is
already stored in NET 2. When a new pattern Pnew (recall that a pattern consists of an
input and a target) arrives at NET 1, this network performs one learning pass with
this pattern (i.e. one feedforward pass and one weight change backpropagation pass).
In the mean time, noise is sent through NET 2 in order to produce a pseudopattern
(that will reflect the contents of the previously learned information stored in NET 2).
This pseudopattern (pseudo-input and associated network output) is then presented to
NET 1, which performs a single learning pass on this pseudopattern. (Note that more
than one pseudopattern from NET 2 can be presented to NET 1 in this way after each
Pnew learning pass.) Pnew is then presented to NET 1 again and it performs another learn-
ing pass on this pattern. Another pseudopattern is then generated by NET 2 and NET 1
does another learning pass on this pseudopattern. This process continues until Pnew is
learned to criterion by NET 1.

The same procedure applies if a set of new patterns is to be concurrently learned, the
only difference being that NET 1 performs a single feedforward-backpropagation pass
for each of the new patterns to be learned and for each of the pseudopatterns generated
by NET 2. This continues until all of the new patterns are learned to criterion.

As discussed in section 2.2, the phase in which NET 1 learns new information from the
environment, augmented by pseudopatterns from NET 2, is called the interleaving phase
of the system. There is also a transfer phase during which the information learned in
NET 1 is transmitted to NET 2. This involves NET 1 generating a number of pseudopat-
terns and, for each of these NET 1 pseudopatterns, NET 2 performs a single learning
pass, thereby transferring information stored in NET 1 to NET 2.

3.2. Learning in RSRN dual-networks
The basic principles of RSRN dual-network learning, where each of the networks in the
system is a RSRN, are very similar to those underlying dual-networks of RFNs. Dual-
network RSRNs are designed to learn multiple sequences of patterns.

Assume that we have two RSRNs (see figure 3), which, as before, we shall designate
as NET 1 and NET 2. NET 1 and NET 2 are identical networks. New sequences will
be learned only by NET 1, while NET 2 will store the previously learned information.
The learning procedure is similar to that of the basic RFN. A sequence, S ¼ S(0),
S(1), . . . , S(n), is presented to NET 1. The network makes a single pass through the
entire sequence, updating its weights once for each item in the sequence. This defines
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one learning ‘epoch’ corresponding to one presentation of all items in the sequence in
order. Next, NET 2 generates a number of pseudopatterns (e.g. 10 per learning
epoch), as described in section 2.7. These pseudopatterns are close to attractor states
of NET 2, which makes them particularly good vehicles for information transfer
from NET 2 to NET 1. For each NET 2 pseudopattern, NET 1 performs one feedfor-
ward-backpropagation learning pass. Once this is completed, a new learning epoch
starts and NET 1 makes another pass through the sequence S. NET 2 generates new pseu-
dopatterns, each of which is learned for one feedforward-backpropagation pass by NET
1; and so on. This is the interleaving phase for a RSRN dual-network.

It is extremely important to realize that the pseudopatterns generated by NET 2 are
static information representing a previously learned dynamic sequence. This is what
gives this system its power: there is no need to attempt to reproduce an entire pseudo-
sequence that will then be interleaved with the new sequence being learned (and, in
fact, as we shall see, this intuitive solution does not work). Rather, we need only to inter-
leave with the new sequence to be learned a set of pseudopatterns that reflects—indepen-
dently of the occurrence order of each individual pseudopattern—the information of the
entire previously learned temporal sequence (or sequences).

To transfer a sequence learned by NET 1 to NET 2, we again make use of pseudopat-
terns. This time the pseudopatterns are generated by NET 1 and learned by NET 2. For
each pseudopattern generated by NET 1—again, these will be close to attractor states of
NET 1—NET 2 performs a single feedforward-backpropagation learning pass.

4. Simulations
4.1. Overview
We shall present six simulations. The first will demonstrate the severity of catastrophic
interference in multiple sequence learning in standard SRNs. We shall then show, in
a second simulation, that the intuitively plausible idea of using pseudo-sequences to
alleviate this problem does not work. The third simulation will demonstrate that interleav-
ing a set of pseudopatterns with the new sequence being learned does, indeed, eliminate
catastrophic interference. The fourth simulation will show how this technique can be used
to allow networks to learn long sequences by sequentially learning sub-sequences of the
long sequence. The fifth simulation will show that pseudopatterns reflecting the pre-
viously learned sequence can be inserted randomly within the new sequence as it is
being learned (rather than, as in the other simulations, requiring them to be inserted
only after each learning epoch of the new sequence) and this will still allow the
network to learn the new sequence and not forget the old one. Finally, in the sixth simu-
lation, we shall show that the self-refreshing mechanism can cope with second-order con-
ditional sequences (or SOCs, Cohen et al. 1990, Reed and Johnson 1994), highly
ambiguous sequences in which no single element alone uniquely predicts its successor.

4.2. Network architecture and parameter settings
A standard SRN was used for the first simulation that demonstrates the severity of
catastrophic interference in multiple sequence learning. In the second simulation, two
standard SRN networks were used to explore learning with refreshing by interleaving
pseudo-sequences. A dual-network architecture consisting of two coupled RSRNs will
be used for the remaining four simulations. Each RSRN has an input layer with 100
‘standard’ input units (corresponding to the length of the items, S(t), in the sequence)
and 50 ‘context’ units. The hidden layer consists of 50 units. Finally, the output layer
consists of 250 units: 150 ‘autoassociative’ inputs that are identical to the input layer,
plus 100 ‘target’ units (see figure 3).
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Learning a given sequence involves presenting it repeatedly to the network until
the network can generate the entire sequence (with a predefined degree of precision),
by starting with the initial item of the sequence (paired with the neutral context;
see section 4.3) and feeding each output back into the input, thereby producing each
successive item of the sequence. The network weights are updated by backpropagation
once per presentation of each sequence item. A cross-entropy error function is used
(Hinton 1989a, Plaut et al. 1996) with a learning rate of 0.01, a momentum of 0.5 and
a 1.0 bias term. All weights are randomly initialized between 20.5 and 0.5.

Each random input vector is ‘reverberated’ five times (i.e. R ¼ 5; see section 2.7)
before this reverberated input is sent through the network to the target output units to
create the pseudopattern that will be used. Ten pseudopatterns from NET 2 are inter-
leaved after each learning epoch of the new sequence to be learned by NET 1 (except
in the fifth simulation where this number will be varied). During transfer of the infor-
mation from NET 1 to NET 2, 104 pseudopatterns are used (except in the sixth simu-
lation in which this number will be greater).

4.3. Measuring sequence learning and forgetting
A recall test of a given sequence S(0), S(1), . . . , S(t), . . . , S(n) is performed as follows.
First, the input layer of the network is initialized by the starting item S(0) and the neutral
context vector. This concatenated vector is sent through the network and produces an
output vector consisting of an autoassociative part and a heteroassociative (i.e. target)
part (see figure 3). The heteroassociative part of the output, denoted by s(1), is then rein-
jected to the ‘item’ part of the input vector while the activity of the hidden layer is copied
to the ‘context’ part of the input vector. This new input vector is sent through the network
and produces an output vector consisting, as before, of an autoassociative part and a het-
eroassocative part, s(2), and so on. Hence, a series of heteroassociative outputs s(1),
s(2), . . . , s(t), . . . s(n) are sequentially generated by the network from the successive
reinjections at the input layer of hidden and output layer activity generated by the
network itself. It is important to note that this test of sequence recall is considerably
more stringent that the local prediction tests often used in the sequence-learning litera-
ture, where what is evaluated is the ability of the network to predict the subsequent item
of a sequence when the true preceding item is provided to the network. In this paper, we
are interested in the network’s ability to self-reproduce a whole sequence, from begin-
ning to end, from a single starting input activation, without any information provided
from the environment (i.e. the true preceding elements).

For each input, s(t), reinjected from the generated sequence and fed through the
network again, we evaluate the discrepancy between the resulting computed hetero-
associative output s(t þ 1) and the desired target item of the sequence S(t þ 1). We cal-
culate the difference S(t þ 1) 2 s(t þ 1) for each of the 100 ‘target’ output units and
count the number of output units for which the absolute value of this difference is
above a given learning criterion (except where specified, this criterion was set to 0.1).
So, for example, if on the output layer 14 of the ‘target’ output units of s(t þ 1) differ
from the corresponding units of S(t þ 1) by more than 0.1, we say that there are 14
‘incorrect’ units. A sequence is considered to have been learned if, from its starting
item S(0), associated with the neutral initial context, the network produces a series of
computed vectors s(t), each of which has all of its units within 0.1 of the corresponding
unit of the expected sequence item, S(t).

The measure of how well the network has learned (or forgotten) a sequence after a
given number of learning epochs will be the number of incorrect units for each item
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of the sequence. In simulation 5 we shall indicate only the total number of incorrect units
over the sequence.

4.4. Simulation 1: catastrophic forgetting in multiple sequence learning
To illustrate the severity of catastrophic forgetting in multiple sequence learning, we
shall consider two sequences, A and B, and have a SRN attempt to learn them sequen-
tially. The sequences are constructed as follows. Twenty-two distinct random binary
vectors of length 100 are created (i.e. vectors consisting of 0s and 1s with a selection
probability of 0.5). Half of these vectors are used to produce the first ordered sequence
of items, A, denoted by A(0), A(1), . . . , A(10). The remaining 11 vectors are used to
create a second sequence of items, B, denoted by B(0), B(1), . . . , B(10). In order to intro-
duce a degree of ambiguity into each sequence (so that a simple BP network would not
be able to learn them), we modify each sequence so that A(5) ¼ A(8) and B(1) ¼ B(5).
First, sequence A is perfectly learned by the network. Then sequence B is learned and,
during the course of learning, we monitor at regular learning-epoch intervals (using
recall performance tests as defined in section 4.3) how much of sequence A has been
forgotten by the network.

Figure 4(a) shows the progression of the network’s learning of sequence B. The
number of incorrect units for each serial position of the sequence, as defined earlier,
is shown. (Note: in figure 4, as well as in subsequent figures, serial positions start at 1
since the sequence item S(0) is used only to initialize sequence learning and recall.
S(1) is the first sequence item actually recalled by the network.) As expected, it is
harder for the network to learn B(2) and B(6) since their immediate predecessors are
identical and, in order to distinguish them, the network needs additionally to take into
consideration the context of the preceding items in the sequence. After 450 epochs,
the network has completely learned the entire sequence B.

During learning of sequence B, we monitored the forgetting of the previously learned
sequence, A (see figure 4(b)). Initially (i.e. before the network began learning sequence
B), it can be seen that sequence A was completely learned. But very early on, as sequence
B is learned, the network’s memory of sequence A is overwritten. By five epochs after
beginning to learn the sequence B (not shown in figure 4(b)), the network gets an
average of 40% of the units of the items of sequence A wrong. By 250 epochs, the
network’s performance on sequence A is essentially no better than chance and, by
450 epochs, sequence A is, to all intents and purposes, completely forgotten. In short,
there is a severe catastrophic forgetting of sequence A. To ensure that our measure of
catastrophic forgetting was not due to the use of an overly severe criterion of correctness,
after learning sequence B, sequence A was checked with a test criterion of 0.5 (that is,
checking whether computed outputs were at least on the correct side of 0.5). Even
with this weak criterion, the results still showed severe catastrophic forgetting.

4.5. Simulation 2: catastrophic interference is not overcome with pseudo-sequences
Using pseudo-sequences to refresh a sequence-learning network is an intuitively plaus-
ible idea to solve the problem of catastrophic forgetting, being directly analogous to the
use of pseudopatterns to refresh a network learning new static patterns. The idea is that,
after the network had learned sequence A, one would generate a number of pseudo-
sequences that, hopefully, would reflect sequence A. These pseudo-sequences would
be used to refresh the network memory when it learnt a new sequence B. We tested
this procedure and found that, contrary to expectations, it does not work.

First, NET 1 (an SRN) completely learned sequence A. Then NET 1 generated
104 pseudo-sequences, PS, that were used to train an identical SRN, NET 2. To create
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Figure 4. (a) Learning of sequence B (after having previously learned sequence A). By

450 epochs (an epoch corresponds to one pass through the entire sequence), sequence B

has been completely learned. Note that it is more difficult to learn the two ‘ambiguous’

target items, S(2) and S(6). (b) The number of incorrect units for sequence A during

learning of sequence B. After 450 epochs, the SRN has, for all intents and purposes,

completely forgotten the previously learned sequence A. (Note that for the sake of

readability of the graphs, the learning epochs increase from left to right in the second

graph in the direction of the arrow.)
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each pseudo-sequence we fed a random input PS(0) through the network, collected the
target output PS(1), then input PS(1) through the network to produce PS(2) on output,
then input PS(2) to the network, etc. This produced a pseudo-sequence PS ¼ fPS(0),
PS(1), . . . , PS(10)g. When the random PS(0) was input into the network, the context
units were initialized with the neutral context. For the subsequent pseudo-sequence
inputs PS the context units contained, as usual, a copy of the hidden-unit vector
H(t 2 1) associated with the previous item in the sequence. Then, when sequence B
was being learned in NET 1, after each sequence learning epoch, NET 1 did a learning
epoch for a pseudo-sequence generated by NET 2. As B was being learned, we monitored
NET 1 to see if its performance on A had improved compared with a situation where
no pseudo-sequences had been used. It had not, as shown in figure 5. In other words,
the pseudo-sequence technique did not reduce the catastrophic forgetting of the
previously learned sequence. In fact, the performance of the network on recalling
sequence A was considerably worse when pseudo-sequences were used.

In explaining the failure of the pseudo-sequence technique, it is important to note that
any given random input vector has no reason to be close to the initial item of the pre-
viously learned sequence. Clearly, the pseudo-sequence mechanism would be effective
were the network to be given the real initial item of the originally learned sequence. This
would, in fact, amount to a true refreshing process. However, this would require a sep-
arate dedicated memory that would be able to supply a reasonable approximation of the
initial item of the previously learned sequence (or sequences). However, even if one
could design such a system, it would still have no way of knowing a priori the length
of the originally learned sequence(s). Consequently, it could not know how many
sequence pseudo-elements it would have to generate to create pseudo-sequences reflect-
ing the previously learned sequences. This problem also arose in the present simulation
for which there was no theoretical justification for setting the pseudo-sequence length to
the length of the original sequence A.

In this paper we do not rely on ordered series of pseudopatterns and, as a consequence,
there is no problem with initial items or sequence lengths. Most importantly, our method
of generating and interleaving individual pseudopatterns (as opposed to sequences of
pseudopatterns) allows the self-refreshing system to work with remarkable flexibility,
as will be shown in section 4.8.

Figure 5. Recall performance for the first sequence A, once the second sequence B is

completely learned in a SRN, with (a) and without (b) the pseudo-sequences refreshing.

Whatever the learning criterion may be, it appears clearly that refreshing by pseudo-

sequences in no way reduces catastrophic forgetting.
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4.6. Simulation 3: catastrophic forgetting is overcome with pseudopatterns
A RSRN dual-network architecture was used with the parameters indicated in section
4.2. First, both networks are initialized to random-weight settings as described above.
NET 1 then perfectly learns sequence A. This primary network (NET 1) then generates
104 pseudopatterns in order to transfer this learning to the secondary network (NET 2).
(Given the size of input layer of each network (150 units), there are 2150 possible distinct
states for the input layer and, hence, there is a very little probability that the random
binary vectors used to produce the ‘attractor pseudo-input’ (see section 2.7) will be
actual input patterns that the network has already seen.)

Now, NET 1 begins to learn sequence B. After each learning epoch (consisting of the
entire sequence of items in B), NET 1 receives 10 pseudopatterns from NET 2 and does
one feedforward-backpropagation pass for each of them. The use of 10 pseudopatterns
allows a direct comparison with the results of simulation 2 in which self-refreshing
was done with pseudo-sequences of length 10. Otherwise, the number of pseudopatterns
is not related to the length of the previously learned sequences and can be varied.

Figure 6(a) shows that the NET 1 does, in fact, learn sequence B completely by
400 epochs. In other words, for all items in sequence B, all of the units in the network
output are within 0.1 of the desired target output. Notice that the sequence items B(2)
and B(6) are learned more slowly by the network. This was, of course, expected,
since these two items are preceded by identical items, hence creating ambiguity,
having to be solved by the temporal context. During learning of sequence B, we
tested the performance of the network on sequence A. Figure 6(b) shows that there is
virtually no forgetting of sequence A as the network learns sequence B. In short,
catastrophic forgetting has been overcome.

4.7. Simulation 4: learning a sequence by learning sub-sequences
The method introduced in the previous section can now be applied to learning long
sequences (poems, songs, lists of instructions, etc.) by breaking them into shorter,
more manageable sub-sequences. In this simulation we shall show how the dual-
network RSRN model solves the problem of learning a whole sequence by learning
its successive component parts.

We begin with a sequence of 21 ordered patterns, denoted by S(0), S(1),
S(2), . . . , S(20). These sequence items were constructed as in the previous simulations.
First, 21 distinct vectors with 100 random binary components (0 or 1 with probability
0.5) were created. We made two pairs of items identical, S(3) ¼ S(6), and
S(15) ¼ S(19). The sequence S was next divided into two sub-sequences: C, consisting
of the first consecutive items S(0) to S(10) (with two repeated items S(3) and S(6)); and
D, consisting of the remaining consecutive items S(10) to S(20) (with two repeated items
S(15) and S(19)). Note that the two sub-sequences also have item S(10) in common. Sub-
sequence C ends with this item, while sub-sequence D starts with this same item. The
role of this ‘link’ item is to attach the two sub-sequences when the whole sequence
has to be recalled after sequential learning of the two sub-sequences separately (that
is, learning C and then learning D).

Using the same network parameters as in simulation 3, we start from an initial state
where the primary network, NET 1, has already perfectly learned sub-sequence C. If
sub-sequence D were now learned without the self-refreshing mechanism, it would
catastrophically interfere with sub-sequence C. However, with self-refreshing in a
dual-network RSRN setting using attractor pseudopatterns, catastrophic interference
of sub-sequence C by sub-sequence D is eliminated (as in simulation 3).
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Given the results of simulation 3, it is not particularly surprising that sub-sequence
concatenation as described here would work. What is interesting to note, however, is
that when sub-sequence D is learned by the network, the context units do not contain
the context (i.e. the hidden layer representation) from the last item of sequence C that
was previously learned by the network. Rather, the context units are simply reinitialized

Figure 6. Recall performance for sequences B and A during learning of sequence B by a

dual-network RSRN. (a) By 400 epochs, the second sequence B has been completely

learned. Note that it is more difficult to learn the two ‘ambiguous’ target items. (b) The

previously learned sequence A shows virtually no forgetting. Catastrophic forgetting of

the previously learned sequence A has been completely overcome.
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to the 0.5 neutral values before the network begins to learn sub-sequence D. The
network, in spite of the change of the temporal context for the linking item, is able
to concatenate correctly the two sub-sequences to self-produce the full sequence of
20 ordered items, starting only from the initializing item S(0) and the neutral context,
without any other information provided from the environment (see figure 7).

4.8. Simulation 5: random pseudopattern interleaving
Here we discuss a number of possible ways of interleaving the pseudopatterns with the
new sequences to be learned so as to generalize the self-refreshing mechanism and to
show its robustness and, in so doing, extend its neural and cognitive validity. Up to
this point, pseudopatterns were inserted only after each learning epoch of the new
sequence. Now we shall explore two other ways in which pseudopatterns reflecting pre-
viously learned sequences can be inserted randomly within the new sequence as it
is being learned. The motivation for this was that, in most cases, there is little or no a
priori reason that the system would ‘know’ that a sequence-learning epoch had just
been completed and that it was time to generate some pseudopatterns. We therefore
felt that it was necessary to investigate whether this constraint can be removed. It
turns out that it can.

Normally, NET 1 learns sequence A, as defined in simulation 3, and this information is
transferred to NET 2 by means of pseudopatterns emanating from NET 1 and learned
by NET 2. NET 1 then begins to learn the new sequence B. Then NET 1 does one feed-
forward-backpropagation pass for each of the items of sequence B and, only then, does

Figure 7. Recall performance for the whole sequence in the course of learning of its second

sub-sequence D within a RSRN dual-architecture. By 300 epochs, the second sub-sequence

D has been completely learned. The previously learned sub-sequence C shows no forgetting

and the whole sequence of 20 ordered items can be perfectly reproduced when starting only

from the initializing item S(0) and the neutral context. The two separately learned sub-

sequences C and D were correctly linked.
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a feedforward-backpropagation pass for each of the pseudopatterns generated by NET
2. This interleaving method is called the ‘between-sequences’ procedure. But as we
said above, it could be argued that this strict alternation of real sequence learning and
pseudopattern learning lacks flexibility. Thus, for the following simulations, we
decided to interleave the pseudopatterns within sequence B, that is, between items
forming the sequence being learned, rather than wait until a learning epoch for sequence
B was completed. We call this method the ‘within-sequence’ procedure.

One learning epoch for sequence B in NET 1 normally consists of one feedforward-
backpropagation pass for each of the 10 successive input-target patterns,
[B(0) ! B(1)] [B(1) ! B(2)] [B(2) ! B(3)] � � � [B(9) ! B(10)]. (Note: with this nota-
tion the current temporal context, designated in figures 2 and 3 by H(t 2 1), that is system-
atically included in each input is omitted.) Now, we assume that a pseudopattern
generated by NET 2, C: ic ! oc, may be interleaved within a learning epoch of sequence
B in one of two ways. In the first interleaving mode of the within-sequence procedure,
called the ‘insert mode’, a fixed number of pseudopatterns, denoted M, may be inserted
between two successive input-target patterns of the sequence, for example, taking M ¼ 3:

� � � ½B(2) �! B(3)�½ic1 �! oc1�½ic2 �! oc2�½ic3 �! oc3�½B(3) �! B(4)� � � �

Note that in this mode the links of the sequence are not ‘broken’ (B(3) in the example
above), even though the current temporal context is. It is, indeed, the hidden layer acti-
vations induced by the last occurring pseudopattern that will constitute the contextual
input for the first real pattern learned after pseudopattern insertion. In the second
mode, called the ‘replace mode’, the M pseudopatterns may replace a number of input-
target patterns that are therefore lost for the current epoch, for example, taking M ¼ 2:

� � � ½B(2) �! B(3)�½ic1 �! oc1�½ic2 �! oc2�½B(5) �! B(6)� � � �

Here, the two input-target patterns [B(3) ! B(4)] and [B(4) ! B(5)] are replaced by two
pseudopatterns and are, therefore, lost for the current learning epoch. Both the sequence
and the temporal context are broken.

For these two within-sequence modes, pseudopatterns are generated stochasti-
cally. This means that in the course of one learning epoch of sequence B, with a
given probability p, a pseudopattern ‘gate’ may be opened after each association
[B(i) ! B(i þ 1)]. When the gate is opened, a ‘burst’ of M pseudopatterns is interleaved
at that point in sequence B. For each simulated interleaving mode, we varied p between
0.1 and 1, in two separate conditions: pseudopattern bursts of size M ¼ 1 and bursts of
size M ¼ 5. Simulations were replicated five times. Table 1 shows the performance of
the different self-refreshing procedures for the two within-sequence methods (insert
and replace modes) and for additional simulations using the original between-sequences
procedure (as used in simulation 3). To allow the various procedures to be compared, the
network performance was given as a function of the mean number N of interleaved pseu-
dopatterns per learning epoch of sequence B. For the within-sequence cases, this number
is a consequence of the burst probability p, which was explicitly chosen in order to main-
tain the same mean number N for each column. For the original between-sequences
method, N corresponds, of course, to a fixed number, not to a mean across learning
epochs and replications.

These results demonstrate that all self-refreshing procedures continue to work
with substantial variations in the mean number N of pseudopatterns that are interleaved
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Table 1. Forgetting of sequence A after complete learning of sequence B using different self-refreshing procedures.

Mean number (N) of interleaved pseudopatterns per learning epoch of B

Self-refreshing procedures 0 (i.e. AARN) 1 3 5 7 9 10

PP within sequence

Insert mode

M ¼ 1 PP per burst

Probability (p) of the burst 0.10 0.30 0.50 0.70 0.90 1

Number of learning epochs on B 450 447 718 1178 2188 UnL UnL

Number of incorrect units on A 575.0 28.5 9.0 3.8 3.3 — —

M ¼ 5 PP per burst

Probability (p) of the burst 0.02 0.06 0.10 0.14 0.18 0.20

Number of learning epochs on B 450 391 460 522 562 617 696

Number of incorrect units on A 575.0 38.8 4.2 2.2 0.6 1.8 0.0

Replace mode

M ¼ 1 PP per burst

Probability (p) of the burst 0.10 0.30 0.50 0.70 0.90 1

Number of learning epochs on B 450 539 910 2088 26 945 UnL UnL

Number of incorrect units on A 575.0 26.6 6.4 0.6 8.0 — —

M ¼ 5 PP per burst

Probability (p) of the burst 0.02 0.06 0.10 0.14 0.18 0.20

Number of learning epochs on B 450 427 427 533 645 758 837

Number of incorrect units on A 575.0 29.6 6.6 1.6 0.4 0.0 0.8

PP between sequences (original method)

Number of learning epochs on B 450 380 360 404 380 401 391

Number of incorrect units on A 575.0 29.0 2.6 1.2 2.0 0.2 0.4

UnL: at least in one of the five replications the network fails to reach the 0.1 learning criterion by 100 000 epochs.
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per learning epoch. Note that the procedure fails only when the interleaving probability p
is close to one, i.e. when the context is systematically broken in the insert mode or when
the sequence to be learned is almost never presented in the replace mode. For all the
other cases, catastrophic forgetting is prevented. Even when using a single pseudopattern
per epoch, forgetting is still acceptable since only about 30 units are incorrect out of
the 1000 units involved in coding a whole sequence (i.e. 10 items in a sequence and
100 units to code each item). The difference among the procedures derives mainly
from the number of epochs required to learn the second sequence B. In this respect
the between-sequence procedure (used in simulations 3 and 4) seems to be the most
effective.

In sum, regardless of the interleaving procedure, refreshing by pseudopatterns is effec-
tive. At a neural or cognitive level, the robustness of the self-refreshing mechanism
allows us to choose from any of the proposed procedures, or even from a mixture of
them, depending on the constraints set by the domain/task.

4.9. Simulation 6: challenging the RSRN dual-network with complex sequences
To check at a deeper level the power of the RSRN self-refreshing mechanism, the dual-
network was faced with a class of complex sequences, second-order conditional
sequences (or SOCs, Cohen et al. 1990, Reed and Johnson 1994), in which no single
element in the sequence can predict its successor. The complexity of these sequences
derives from their structure consisting of four distinct items appearing in an order
such that every item is immediately followed by one of the three other possible items
with equal frequency. A single item cannot by itself predict the following item better
than chance. In other words, two consecutive items are always required to predict the
next one. These ‘tailor-made’ ambiguous sequences, used in a specific paradigm
(Reed and Johnson 1994, Shanks and Johnstone 1999, Destrebecqz and Cleeremans
2001) of the implicit learning literature, were used here only as a practical means to
challenge the proposed self-refreshing mechanism.

We created two SOC sequences, SOC1 ¼ abcadcdbacbda and SOC2 ¼
efgehghfegfhe, in which component items were, as in previous simulations, distinct
vectors with 100 random binary components (0 or 1, with 0.5 probability). In agreement
with the definition of this type of sequence, every item is followed by one of the three
other possible items. For example, in SOC1, c is followed by a or b or d (ambiguity),
and two successive items are required to determine the subsequent item, in this case:
(b)c ! a, (a)c ! b, (d)c ! d (the ambiguity is resolved by the predecessor of item
c). Learning this temporal structure in a RSRN (or a SRN) therefore gives a predominant
and permanent role to the current temporal context.

A RSRN dual-network with the same parameters and procedures as in simulations
3 and 4 was used to check the effectiveness of the self-refreshing mechanism in suppres-
sing catastrophic forgetting in the consecutive learning of two SOC sequences, in this
case, SOC1 and SOC2. As before, we start from an initial state where the primary
network, NET 1, has already perfectly learned SOC1. Then NET 1 learns SOC2 either
with or without the self-refreshing mechanism at work. In this latter case, as expected,
severe catastrophic forgetting occurs for the previously learned SOC1. This occurs
almost as soon as the network begins to learn SOC2 (see figure 8(a)). In contrast,
when SOC2 is jointly learned with pseudopatterns from NET 2 (using the same
between-sequence interleaving procedure as in simulations 3 and 4), there is virtually
no forgetting of SOC1 (see figure 8(b)). Hence, the ability of the self-refreshing mech-
anism to overcome catastrophic forgetting in learning complex temporal structures
appears to be as good as in previous simulations on simpler temporal structures.
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Figure 8. Recall performance for the previously learned SOC1 sequence during learning of

a second SOC2 sequence (completely learned by 450 epochs). The two SOCs are made up

of 13 items and, as in previous simulations, the item in position 0 is not shown because it

is used only to initialize sequence learning and recall. (a) Without self-refreshing,

catastrophic forgetting is severe. (b) With self-refreshing, the previously learned SOC1

sequence does not show any catastrophic forgetting during SOC2 learning.
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However, it should be noted that for the transfer phase from NET 1 to NET 2, five times
more pseudopatterns from NET 1 were used than in previous simulations on simpler
sequences. This seems to be the price to pay for higher complexity.1

5. Experimental data and simulations
Up to this point, our main objective has been to demonstrate, by means of simulations,
the power of the self-refreshing mechanism in maintaining the stability of previously
learned sequences. As the initial goal of the dual-network model was to support the
simple fact that humans do not forget catastrophically, we then conducted a more
detailed comparison of human sequence retention and our RSRN model. The experiment
conducted is reminiscent of the classic forgetting experiments carried out by Barnes and
Underwood (1959), with the crucial difference being that, instead of two lists of non-
word–word paired associates, we used ordered series of characters.

5.1. Experiment
5.1.1. Method. Participants. Thirty-five undergraduate students, aged 18–39 years,
participated in the experiment for extra course credit. They were randomly assigned to
one of four experimental groups. Three of them were not retained for the final part of
the experiment since they failed to complete the first learning phase (see ‘Design and pro-
cedure’) in less than 50 min. Stimuli and apparatus. The items were characters presented
sequentially in upper case. Four sequences were used to measure retroactive interference
and were learned during a first phase of the experiment. Each of these sequences,
[W ! 5 ! N ! G ! P], [Z ! H ! 5 ! R ! B], [X ! G ! 8 ! C ! J] and
[Q ! L ! R ! K ! 8], shared at least one character with one of the others. Another
sequence, [S ! T ! D ! B ! 8 ! L ! J ! F ! V], was used to produce retroac-
tive interference in the final phase of the experiment. This sequence was longer in order to
study finely the time course of interference effects. The experiment was run on a PC com-
puter using EPrime V1.1.4.1. Each character was presented in the centre of a 17-inch
monitor (800 � 600 resolution) in Courier New-48 points font.

Design and procedure. Pilot experiments indicated that learning four short sequences
of characters was in fact quite difficult for most participants when they have to produce
delayed recalls. On the basis of these pilot experiments, we designed a learning pro-
cedure that ensured, for most participants, appropriate learning of the four sequences
in a reasonable amount of time (i.e. 35–50 min). The resulting design is quite
complex, because of the necessity, during learning, both to discourage participants
from simply relying on short-term memory and to encourage them by giving appropriate
feedback.

The learning phase of the four sequences was organized in five sub-phases. In the first
sub-phase each sequence was presented starting with a display indicating the first char-
acter for 1s followed, after a 250 ms interval, by the next character for 1 s, and so on until
the end of the sequence. After each presentation of a whole sequence an immediate recall
was required: Its first character was presented followed by a question mark and
the participant had to type the next character on the keyboard and validate it by pressing
the Enter key. Feedback was given and the correct character appeared on the screen
before the next question mark. During this first sub-phase there were two blocks of
sequence learning, a block consisting of the presentation of all sequences in a random
order. The second sub-phase was aimed at giving the participants some insight into
the actual difficulty of the task by asking simply for a recall of each sequence, but
without a prior presentation immediately before the test presentation. The third sub-
phase was a replication of the first one. In the fourth sub-phase the feedback was
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modified so that the correct response did not appear on the screen, errors being indicated
only by a red exclamation mark. Moreover, before each sequence recall, participants had
to solve an addition problem involving two whole numbers lying between three and
49. This calculation was required to prevent participants from relying mainly on their
short-term phonological loop (Baddeley and Hitch 1974) during learning. After a
display indicating a forthcoming calculation, each term of the addition appeared for
1 s, separated by a 250 ms interval, and the participants had to type the response on
the keyboard. This latter sub-phase involved four blocks of sequence learning. The
fifth sub-phase consisted of recalls of the four sequences from their initial characters,
each recall being preceded by a calculation. If a participant made an error during this
test, the four sequences were presented again, and the whole recall test was repeated
until complete success over all four sequences was achieved.

After a 5-min rest period participants underwent 20 learning trials of the new sequence
of length nine. At various times during this learning, participants were asked to recall
one of the four previously learned sequences followed by a recall trial of the new
sequence. Each recall trial was preceded by a mental arithmetic problem as above.
These recall trials occurred after one, five, 10 and 20 learning presentations of the new
sequence. The measure of interest was the evolution of performance on the previously
learned sequences as learning of the new sequence progressed. Performance was
measured not by the number of successive correct characters produced, but simply by
counting the number of correct characters recalled in their correct position within a
sequence. This indicator corresponds to a general recall performance even for partici-
pants who, for example, make an error in the middle of a sequence while being correct
at the end of it. Via a Latin square design, we ensured that, across participants, each of
the four previously learned sequences was tested the same number of times at each of
the four recall moments (i.e. after one, five, 10 and 20 learning presentations of the
new sequence). Our experimental design produced four groups of participants according
to the test order of the four previously learned sequences in this final phase. This ensured
that the results could not be attributed to any intrinsic characteristics of a particular pre-
viously learned sequence but, rather, would be dependent on the moment during learning
of the new sequence at which the initially learned sequence was tested.

5.1.2. Results. For both new and previously learned sequences, the per cent of sequence
items correctly recalled is shown in figure 9, both being a function of the number of
presentations of the new sequence. The first thing to note is that a high degree of learning
of the new sequence (i.e. 99% of correct items after 20 learning trials [F(3, 84) ¼ 69.34;
MSe ¼ 0.02013; p , 0.000001]) does not produce catastrophic forgetting, only retroac-
tive interference. In other words, mean performance on the previously learned sequences
is invariably above 60%. While this is obviously below the perfect learning level exhib-
ited immediately after the first learning phase, participants’ performance is, nevertheless,
quite good if we consider that participants had to perform serial recalls. We can also note
that there is a significant global effect of the moment of testing of the previously learned
sequences in amount of retroactive interference [F(3, 84) ¼ 7.91; MSe ¼ 0.06;
p , 0.0001]. More importantly, there is an initial drop in performance until the
second test of the previously learned sequences [F(1, 28) ¼ 11.57; MSe ¼ 0.06;
p , 0.002] (recall that the first and second tests correspond respectively to the first
and fifth learning presentations of the new sequence) followed by an improvement in
recall performance between the second test and the third test of the previously learned
sequences [F(1, 28) ¼ 17.57; MSe ¼ 0.05; p , 0.0001] (i.e. between the fifth and the
tenth learning trial of the new sequence). These effects are in no way linked to intrinsic
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characteristics of a particular previously learned sequence since there is neither group
effect [F(1, 28) ¼ 0.35; MSe ¼ 0.12; p ¼ 0.78] nor interaction between this group
factor and the moment of test [F(9, 84) ¼ 1.15; MSe ¼ 0.07; p ¼ 0.16].

5.2. Simulated experiment
The previous experiment was simulated using a dual-network RSRN with the same
architecture (i.e. input items and hidden layer of length 100 and 50, respectively), par-
ameters and procedures as in the basic simulations 3, 4 and 6. We created five sequences
(four of length 5 and one of length 9) in which component items were, as in previous
simulations, vectors with 100 random binary components (0 or 1, with 0.5 probability).
These sequences are similar to those used in the experiment in so far as the serial order of
the constituent items is the same. The primary network (NET 1) completely learned the
first four sequences (of length 5) in an interleaved way as in the experiment. Next NET 1
generated 104 pseudopatterns, the same number as in previous basic simulations (except
in simulation 6 where this number was greater) in order to transfer this learning to the
secondary network (NET 2). NET 1 then learned the fifth sequence (of length 9)
either with, or without, the self-refreshing mechanism at work. During learning of this
new sequence, the performance of the network was tested on the four previously
learned sequences in a way that corresponds to the experimental tests. When we
tested the amount of forgetting of the previously learned sequences, for each item
making up a given old sequence, we calculated the root mean squared error (RMS)
between the expected item and the output pattern computed by the RSRN network.
Only when this RMS was less than 0.1 was the network output considered to be
correct for the corresponding sequence item. As an indicator of the global performance
of the network, we computed the percentage of correct items over the four previously
learned sequences.

As in the experiment above, these tests were performed after different numbers of
presentations of the new sequence until learning of it was completed (150 presentations).
The entire learning and test procedure was replicated 10 times, each time starting from a

Figure 9. Recall performance of the new sequence and of the previously learned sequences

during learning of the new sequence. Vertical bars denote standard errors.
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new set of random initial weights for the two RSRN networks, with and without the self-
refreshing mechanism at work. For these two cases, the network performance on the four
previously sequences (per cent correct sequence items, averaged over 10 replications) is
shown in figure 10 as a function of the number of presentations during the learning of the
new sequence.

5.3. Discussion
As expected, severe catastrophic interference occurs in the simulation without the self-
refreshing mechanism. Further, with refreshing, there is virtually no interference with
the previously learned sequences after learning of the new sequence is completed
(after 150 presentations), as was the case with humans (see figure 9). It is, indeed,
particularly interesting to compare the patterns of retroactive interference obtained in
the experiment (see figure 9) and in the simulation (see figure 10, with self-refreshing).
In particular, during learning of the new sequence, there is the same initial drop in recall
of the previously learned sequences, followed by the same subsequent rise in perform-
ance. From the point of view of the dual-network RSRN architecture, this ‘early drop
and subsequent rise’ in recall of old information when learning new information is
due to the restructuring of the connection weights. These weights, initially shaped by
the previously learned sequences, have to adapt suddenly to a new sequence, which
induces retroactive interference, the refreshing process not yet having had enough
time to ‘compete’ with the new information coming from the environment. Then, as
learning of the new sequence proceeds, NET 1 is exposed to more and more internally
generated pseudopatterns from NET 2 (reflecting the previously learned sequences).
This thus explains why there is then a rise in the recall performance of the previously
learned sequences. There is a striking similarity of the patterns of results obtained exper-
imentally and in the connectionist architecture made of basic RSRN modules for which
we are arguing.

Figure 10. Recall performance, with and without the self-refreshing mechanism at work, of

the previously learned sequences during learning of the new sequence (which is completed

after 150 presentations). Without refreshing, there is clearly catastrophic forgetting of the

previously learned sequences. With refreshing, however, the learning curve exhibits, as

for humans, an initial drop and subsequent rise in recall performance.
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This type of coupled recurrent-network architecture might seem to be related to the
general class of ‘chaining’ models that generally provoke some scepticism (see Page
2000). There are, however, crucial differences. In particular, chaining predicts that
once an error is made the rest of the sequence will be lost, which is clearly not how
humans process sequences. Indeed, in the behavioural experiment, this phenomenon
was not observed: during recall tests, one wrong character produced by the participants
in, for instance, the middle of a sequence, did not systematically cause the loss of all sub-
sequent items. It must be emphasized, however, that in our simulation of the multiple
sequence-learning experiment (and in other previous simulations), the RSRN architec-
ture, like people, was also able to make an error in some serial position without losing
the rest of a sequence. In other words, criticisms based on the claim that recurrent net-
works are equivalent to simple chaining models are probably misguided, at least in the
present dual-network RSRN framework (see also Botvinick and Plaut 2004, who demon-
strate, in comparing recurrent and hierarchical models of sequence learning, inadequa-
cies with this particular criticism of recurrent models).

6. Concluding remarks
We have shown that the reverberating dual-network architecture, originally proposed
earlier to overcome catastrophic forgetting in learning non-temporally ordered patterns
(Ans and Rousset 1997, 2000), could be generalized to the learning of successive temporal
sequences. The basic principle of interleaving internally generated pseudopatterns from a
long-term storage network with patterns from the environment being learned by a second
network has been developed elsewhere (Ans and Rousset 1997, 2000, French 1997).

The distinction between successively learning individual patterns of input–output
associations and learning multiple sequences of patterns is an important one. It turns out
that there is no need to interleave pseudo-sequences with the new sequences to be
learned—interleaving large numbers of simple input–output pseudopatterns, which collec-
tively reflect the entire previously learned sequence(s), is what overcomes catastrophic for-
getting of the previously learned sequence(s). In fact, pseudo-sequences produced by NET
2 generated from random input to that network bear no resemblance whatsoever to orig-
inally learned sequence(s) and are of no use in overcoming catastrophic forgetting.

In particular, we wish to emphasize the power of a network architecture that integrates
an autoassociative part with a standard heteroassociative architecture. This type of
network design allows us to produce ‘reverberated’ pseudopatterns that are attractors
of the entire network and that collectively reflect the previously learned sequences. As
for the brain correlates of the self-generated pseudopatterns, Robins and colleagues
(Robins 1996, Robins and McCallum 1999) have suggested that they could be related
to spontaneous cortical reactivations observed during different sleep phases, in particular
rapid eye movement (REM) sleep. This hypothesis is strengthened by human exper-
iments using position emission tomography (PET) imaging techniques that show reacti-
vations during REM sleep of the cortical regions that were previously activated during
the execution of a serial reaction time task during the wake state (Maquet et al. 2000).
However, to account for our results involving multiple sequence learning, we suggest
that the pseudopattern information exchange mechanism is also active during awake
phases, but to a lesser extent because of the greater levels of activity generated by
input from the external environment.

Further research will study the self-refreshing mechanism applied to other types of
temporal structure, such as Reber’s artificial grammars (e.g. Reber 1967, Cleeremans
1993). In particular, it would be particularly interesting to study how knowledge of an
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artificial grammar in one perceptual domain can be transferred to a different perceptual
domain. This problem was addressed by Dienes et al. (1999) using a modified version of
the SRN network. Once a given artificial grammar was learned in one domain (e.g.
sequences of tones differing in pitch), the weights of one of the two hidden layers of
their architecture (the ‘core’ hidden layer) were then ‘frozen’ and the performance of
the same grammar when trained in a different domain (e.g. sequences of letters) was
observed. This model displayed performance similar to that observed in humans, and
the freezing mechanism, which made knowledge transfer possible while avoiding cata-
strophic forgetting, was interpreted by the authors as simulating a dynamic learning
algorithm in which the learning rate was reduced as learning improved. However,
using the same architecture in the context of previous simulations (Altmann and
Dienes 1999) on infant data, Altmann (2002) has recently proposed a very interesting
way (based on pre-training on prior experience) in which the freezing process can be
avoided (see also the recent work of Hanson and Negishi 2002, where it has been
shown that transfer in a recurrent network does not require weight freezing). It is
likely that a self-refreshing mechanism similar to the one described here would allow
us directly to avoid the weight freezing process and to obtain transfer between domains.

This is but one of numerous paths that could be explored with self-refreshing rever-
berating dual-network models. These models may well be applied to areas where sequen-
tial learning of input, whether simple patterns or sequences, long or short, musical or
visual, whether learned explicitly or implicitly, is important.

To demonstrate how the catastrophic forgetting problem can be solved during mul-
tiple sequence learning, we chose the SRN (Elman 1990) as our starting point simply
because this is the most commonly used network in the sequence-learning literature.
This model relies on the backpropagation learning algorithm, widely considered not
to be biologically realistic. However, it has been shown that the deterministic
version of the contrastive Hebbian learning algorithm, or CHL (Peterson and Anderson
1987, Hinton 1989b), is formally equivalent to backpropagation (Xie and Seung
2003) and that CHL could be directly derived from backpropagation (O’Reilly
1996). A crucial feature of CHL is its biological plausibility as it is a Hebbian-type
learning algorithm, relying on only local pre- and post-synaptic activities locally avail-
able. The equivalence between backpropagation and CHL is fundamental because it
implies at least the potential biological validation of an extensive body of research
using feedforward-backpropagation models to explore and explain certain cognitive
phenomena. In any way, the plasticity-stability problem in connectionist models of
learning is a drawback inherent to the entire class of gradient descent learning algor-
ithms in fully distributed systems and the present study proposes an effective and
rather general solution to this major problem.
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Note
1. When the same number of pseudopatterns as in previous simulations (i.e. 104) is used during

transfer from NET 1 to NET 2, the retroactive interference on the SOC1 sequence remains

acceptable (root mean squared error, calculated over the whole sequence, equal to about 0.05).

However, a higher number of pseudopatterns was used in order to show that, for more complex

sequences, the system is able to reach a performance level comparable to that obtained in previous

simulations involving a simpler sequence structure.
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