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L system strategy: the associated growth of a characteristic
type of multicellular development

BERNARD ANSt and JEAN-PIERRE RAOULT

A typical mode of development is frequently observed at all levels of organization in
the lower and higher plants: a zone of undifferentiated cells with great mitotic
activity and generating a zone of differentiated cells which have lost all ability to
divide. A question is put: does this type of development imply, by its very nature, a
specific form of growth curve for organisms, organs, or parts of organs, which exhibit
this development? To answer a question formulated in such a general manner causes
difficulties of a biological nature, so it is proposed to represent simply this type of
development in a one-dimensional array of cells by a primitive model assumed to
summarize the root of the developmental mode. The model, consisting of a class of
L. systems, enables a specific form of growth curve to be found and suggests a con-
nection between a frequently occurring type of development and a form of growth
curve often encountered (growth by successive ° platforms’). The value of the
strategy used is to show that very simple mechanisms may exist which can, by them-
selves, explain some phenomena (in particular, periodic phenomena) observed at a
high level of organization.

1. Introduction

Lindenmayer systems, or L systems, which are today one of the most widely
investigated areas of formal language theory, were introduced by Lindemayer
(1968) as a model for the developmental growth in filamentous organisms. A
one-dimensional array of cells, defining the organism at a given moment, is
symbolized by a sequence of letters (or filament). The letter which is assigned
to each cell is regarded as a discrete cellular state at this moment ; each cell may
be in one of a finite number of states (distinct letters).

“The justification for assuming a finite set of states is that there are usually

threshold values for parameters that determine the behaviour of a cell.

Thus, with respect to each of these parameters, it is sufficient to specify two

conditions of the cell:  below threshold * and ‘ above threshold ’, although

the parameter itself may have infinitely many values’ (after Herman).

An L system consists of a finite set of letters (alphabet), of a set of rewriting
rules (productions), of an initial sequence of letters (axiom) and of an environ-
mental letter corresponding to the influence of the environment. The axiom,
or starting filament, symbolizes the organism at an arbitrary moment of origin ;
time is assumed to progress in discrete steps. The subsequent stages of develop-
ment of the initial filament are symbolized by consecutive sequences of letters
which are obtained, starting from the origin time, by rewriting all the letters of a
sequence, simultaneously at each time step. Rewriting rules take into account
cell division, since any single letter may be rewritten as two letters. When the
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rewriting of a letter depends on the m letters to its left and the » letters to its
right in the sequence, we use the term a ‘ context-dependent * L system, denoted
by (m, n)L system ; if m=n=0, we use the term a ° context-independent * L
system ((0, O)L system or OL system). An (m,n)L system is deterministic,
denoted by I)(m, n)L system, when each letter can be rewritten in only one way
in each context. All systems considered in this paper are deterministic. The
reader specially concerned with biological aspects of L systems is referred to the
works of Baker and Herman (1972 a, b), Frijters and Lindenmayer (1974),
Hellendoorn and Lindenmayer (1974), Herman (1971, 1972), Herman and Schiff
(1974), Lindenmayer (1968, 1971, 1975), Liick (1975), Liick and Liick (1976),
and Mayoh (1974). More generally, for a survey of L systems from both theo-
retical and biological points of view, the reader will find very complete infor-
mation in the book by Herman and Rozenberg (1975), in that of Rozen-
berg and Salomaa (1974) and in that of Lindenmayer, and Rozenberg (1976).

A particularly interesting topic in the study of L systems is the theory of
growth functions, functions which give the length (number of letters) of a filament
at each stage of its development. Papers treating the topic of growth functions
of DOL systems are Doucet (1973), Paz and Salomaa (1973), Salomaa (1973),
Szilard (1971), and Vitéanyi (1973). Growth functions of D(m, n)L systems are
considered by Karhumiiki (1974 a, b) and Vitényi (1974). A survey paper in
the field of growth functions is by Herman and Vitényi (1976).

In this paper, we are interested in a typical mode of development frequently
observed at all levels of organization in the lower and higher plants: a zone of
undifferentiated cells with great mitotic activity and generating a zone of
differentiated cells which have lost all ability to divide. More precisely, we put
the following question : does this type of development imply, by its very nature,
a specific form of growth curve for organisms, organs or parts of organs, which
exhibit this development? Of course, to answer a question formulated in such a
general manner causes difficulties of a biological nature because it entails, among
other things, the detailed knowledge of the underlying mechanisms of this type
of development, mechanisms which are very specific in each particular case, and
also which should be sufficiently general to be useful for characterizing a general
type of development. So we have to restrict our ambitions and only consider
the possibility of the existence of simple and general mechanisms which are able
to explain, by themselves, such phenomenology. Thus our approach here is to
represent what is most characteristic and most essential in the considered typical
development by a basic model, as simple as possible, where the developing
organism or organ is composed of a one-dimensional array of cells. This model
will be formally a class of L systems defined by a number of developing properties
and supposed to summarize the essentials of this development. In what follows
we shall show that, for this class of L systems, the mentioned type of development
implies a specific form of the associated growth function.

2. Formal definition of D(m, n)L systems
2.1 Generalities on finite sequences

Let A be a finite set. For all integers n (positive or equal to 0), we denote by
A™ the set of all sequences of length » with all their terms belonging to 4. 1In
particular, A4'= 4 (any sequence of length 1 is denoted as its unique term) and
A?is the set with only one element, which is denoted by e, and called the empty
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sequence. We denote by 4* the set of all finite sequences, and by A+ the set of

all finite non-empty sequences: 4*= U A7 and 4+= U 4A". For each element
n=0 n=1
z of A*, we denote its length by |z| (thus, we get |¢| =0 and z e4!*),

Given a sequence z of length n, let us say z=(a, . .. a,), and two integers / and
I" such that 0 <l <!’ <n, we call the section of z delimited by I and I’ (denoted by
T(z, 1, 1)) the sequence of length I’ —1, (b,...b;._;), defined by: for all i, such
that 1<i<l'—1, b;=a,,;(i.e. (by...by_))=(t3,...a;)). In particular, we have:

for any I such that 0<li<n, T'(z, 1, l)=e;

if n| = 1, then, for any I such that 1 <l<n, T(z,1-1,)=a;;

T(z'0, n)=2.

Subsequently, it will be convenient to adopt the following notations: A* is the
set of all triplets (z, 7, I") where z belongs to A* and [ and I’ are two integers
satisfying 0 <1<’ < |z|: A+ is the set of all triplets (z, /, I') where z belongs to 4+
and/and !’ are two integers satisfying 0 <l <1’ <|z|. Wenote that 7" is a mapping
from A* to A*, and moreover, that for any element (2,1, ') of A+, T(=,1,1)
belongs to 4+.

We define on A* a binary operation called concatenation (in other words,
‘ placing end to end °) in the following way : to each pair (2,, 2,) of finite sequences,
we assign the unique finite sequence, denoted by z,z,, which satisfies :

[212a] = [21] + |25 5
T(2125, 0, |21|) =2,
T2y |2] - [29] + [25]) =2,

This operation is obviously associative, and admits e as its unit element. Let
p finite sequences, z,, z,, ..., z,, be given; their product (with respect to con-
catenation) is denoted by z,2,...2,, or [] z. If all sequences z,,2,,...,2, are
1<i<p
equal to the same sequence », we denote [| z;=uv? (this is the pth power with
1<i<p
respect to concatenation of »). Furthermore, we put v°=e¢, and note that, for
all p, vP* =oPp.  Ifzisa finite sequence, and (/, .. .,1,) is an increasing sequence
of integers, with 0 and |z| for its extreme terms (i.e. 0=l,<l; < ... <l,=2|),

then we get 2= [] 7'(z,1; ,1)): in particular, any sequence is obtained by
1<<i<<p
concatenation of its terms (we have (a,...a,)= || @). Hence, if h is an
1<i<p
element of 4, A7 is the sequence of length p with all its terms equal to % (in the

particular case where p =0, we find again A°=¢).

2.2. D(m, n)L systems
Let m and n be two integers (positive or equal to 0). We call D(m,n)L
system every quadruplet S=(4,5,q,z,), where:
A is a finite set, called an alphabet (its elements are called letters, and the
elements of A* are called filaments) ;
¢ is an element of A4, called the environmental letter ;
¥, 1s an element of 4+, called the axiom ;

8 is a mapping from A4 to A*, called the rewriting rule
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(for any element y of A™+1+7 let y=(a, . . . @W00 10mi2- - - Cmiz H,), we shall state
that ‘ 8(y) is the rewriting of a,, .,, depending on the context a, .. .a,, to its left
and on the context a,,,,...a,,. ., to its right *).

To each filament w of length & we assign its extension, denoted by @, and
defined by @ =g™wg™. Then we can assign, to the D(m,n)L system (4, §, g, z,),
a mapping from A* to itself, called the generating function, denoted by 8’, and
defined by :

d'(e)=e;

if w is an element of 4+, §'(w) = n 8(T(w,i—1,m+1i+n))
1<i<|wl
The preceding formula has the following interpretation ; for any non-empty w,
8’(w) is obtained by concatenation of the rewritings of the successive terms of w,
the context of each term being composed :

to its left, of the m terms which precede it in w (completed on the left, if need
be, with as many ¢ as is necessary) ;

to its right, of the n terms which succeed it in w (completed on the right, if
need be, with as many g as is necessary).

8" interprets the development of a whole filament during a time step. The
letters g added to the right and to the left of w represent implicitly the influence
of a constant environment upon the organism symbolized by w. Given an
integer i > 0, we denote by (8’)' the ith power (with respect to the composition
of the mappinas) of 8’ f01 any filament w, we have (8")%w)=w, and for any
integer i > 0, (8")"1(w) =8"((8")i(w)).

We call the lrm Jua,ge produced by S, denoted by L(S), the infinite sequence
with (8")i(x,) for its general term; L(S) represents, in point of fact, the sub-
sequent stages of development, during the successive time steps i, of a filament
symbolized at the initial time (0) by the axiom a,.

We call the growth function associated with S, denoted by fg, the mapping
from the set of positive or null integers to itself, which, at each i, assigns the
length of (8")i(,) : fs(?) = [(8")i(,)]-

A D(m,n)L system is called propagating (denoted by PD(m,n)L system) if
and only if, for any element » of A™#147 §(v) is non-empty. It is clear that the
growth function of a PD(m,n)L system is increasing (if 7 <i’, fg(?) < fs(i'))
~ Subsequently we shall consider only PD(m,n)L systems and we shall write
; for (8')(,).

2.3. Descendance

For any filament w of length k, and any ¢ such that 1<i<k, let N(w,1)
=|8(T(w,1—1,m+i+mn))|; this is the length of the section of §'(w) * descending ’
from the ith term of w; obviously, we have the equality [8'(w)|= > N(w,1).

1<i=k

A+ being (as in §2.1.) the set of all triplets (w,,1') such that w is a non-empty
filament, and ! and !’ are two integers satisfying 0<l<!l'<|w|, we define a
mapping, denoted by &, from A+ to itself as

S(w, 1, 1') (S(w S N(w,i), zN('wz>

i<l
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> N(w,i) and 3 N(w,1) are the integers which delimit, in §’(w), the section
i<l i<l

g descending " from the section of w delimited by I and I"; this last property is
expressed by the formula

T@w, 1, )= T[] 8(T(®, i—1, m+i+n))

1<l

In particular, we have 8(w,i— 1, 1) = (8'(w), 3 N(w,j), ZN(wj ), and 8(w, 0, [w))
i<i

=(8"(w),0,|8'(w)|). For all positive or null integers pf 8 denotes the pth power
(with respect to the composition of mappings from A+ to itself) of §; i.e. for any
element (w,1,1') of A+, we have §%(w,1,I') = (w,1,1’) and, for all p, 57’+1(u, L)
=87(8(w, 1, 1))

We deﬁne a mapping, denoted by y,, from 4+ to A+, by: 'yp(w LU)="T(8(w,
L1). v, is called the descendance of order p (actually, y p( w, 1) is the seotlon of
(8")?(w) descending from the section of w delimit-ed by l and I'). In particular,
we have y, =T, and for all p, y,(w, 0, |w|)=(8")?(w). We note that, given I and
U, if (1,,...,1,) is a strictly increasing sequence of integers, with [ and ! for its
extreme terms, we obtain y (w,,1") n yp(w, 1y, 1;) : this last formula means

1<i<s
that if a section of w is itself divided into s successive ‘ sub-sections °, then the
descendance of order p of this section is obtained by concatenation of the de-
scendances of order p of these sub-sections. This obvious property will be
subsequently referred to as decomposability of descendances; in particular, we
have, if =0 and I' = |w|, (8")?(w)= [] yp(w, iy, b).
T=i=s

3. A special class of PD(m, n)L systems

We shall try to draw conclusions about the general form of the growth
function of a one-dimensional array of cells, bathed in a constant environment,
and showing the following characteristic type of development: whatever the
considered stage of development of this array may be, all the cells of which it is
composed, except the one lying on the far right-hand side (apical), will have
respectively, after a more or less long lapse of time, a descendance composed of
cells all having eventually reached the same stationary state (denoted by &), a
state for which all division is impossible. This lapse of time may be zero if the
cell considered is already in the state % ; furthermore, the growth of the array is
infinite. In order to give a more concrete idea of this situation, let us say that it
concerns a cellular array which looks like a generating layer of cells (where the
apical cell is never in the state 2) behind which cells, all having eventually
reached a stationary state % (for instance, an irreversible state of differentiation),
continually accumulate. In a formal way, we are interested in the general
form of growth of cellular arrays, answering by hypothesis conditions of ap-
plication of PD(m,n)L systems, and such that it is possible to find, for each of
them, m, n, 4,8, g, ,, such that S ={A4,3, g, x,) satisfies the following properties.

(P 1) Properties dealing uniquely with 6

P1.1) Maximum divisibility into two parts
Y P
For any y belonging to A™*1+%, |§(y)| is equal to 1 or 2.
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(P 1.2) Ewxistence of a stationary state
There exists an element of A, denoted by %, such that, for any z
belonging to A™, and for any ~' belonging to A™, we have: (zhz') =h
(A is called the stationary state, and any filament with all its terms
equal to 4 is said to be a stationary 'ﬁlrlmem).

(P 2) Properties bringing in the axiom x,

(P 2.1) Infinite growth
[s(7) tends to + co when i tends to + 0.

(P 2.2) Stationary outcome of the non-apical section
For any integer i, positive or equal to zero, there exists an integer p,
positive or equal to zero, such that the descendance of order p of the
section of x( el(S)) delimited by 0 and |z;| —1 (i.e. of the whole x;
deprived of its last cell, called the apical cell) is stationary.

Systems S which possess the properties (P 1) and (P 2) will be called S, systems.

1. First consequences
3.1.1. Remarks about the property (P 2.2) : stationary outcome

For any positive or null integer 7, let us denote by p, the smallest integer such
that y,(x;, 0, |2;| — 1) is stationary and by ¢; the length of y, (x;, 0, [4;| — 1) ; then
we obtain, under the property of stationarity of & (property (P 1.2)), for all i’
greater than or equal to p;, y;(;, 0, |2;| — 1) =A% (let us remark that, if 7'(a;, 0
l;] — 1) is already itself stationary, we have p,=0).

It is obvious that, if 7 and I’ satisfy 0<l<!'<|a;| — 1, the descendance of a
sufficiently high order of 7'(x,,1,1’) will be stationary. Conversely, let (I, ...,1,)
be a strictly increasing sequence of integers, with 0 and |x;] — 1 for its extreme
terms ; let us suppose that, for any j (1 <j <s), the descendance of T'(x;,1;_,,1;) is,
for a sufficiently high order, stationary ; then, it follows from the property of
decomposability of descendances that the descendance of 7'(x;, 0, |a;| — 1) itself,
is for a sufficiently high order, stationary. This sufficient condition for
stationarity of a descendance of sufficiently high order of 7'(x;, 0, |x;| — 1) will be,
in particular, employed with s=|a;/ —1: in this case, we have to consider all
sections of 2, made up of only one element. If, for all j, we denote by p,; the
smallest integer such that yp;(«;,j — 1, ) is stationary, and by ¢;; the length of
ynij(;;j—1,j), we obtain the following obvious properties :

for all &’ = pyj, v (2,5 — 1, j) =h"is
pi=sup (py; - - o Pijz-1) 5

-

= 2 9ij-

1<j=<|z;l—1

3.1.2. The apical cell divides an infinite number of times

Let I be the set of ]‘)o':itive or null integers ¢ such that N(x;, |«,|) =2 (using the
notation introduced in §2.3.). Let us suppose that [ is finite ; then I admits a
greatest element, let us say i,. Leti;=i,+ 1 ; for all j greater than or equal to 0,
the descendance of order j of the apical cell of x;; consist of only one term:
vy, [ — 1, |2i])| =1. We also know that there exist p;; and ¢;; such that,
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for all j greater than or equal to p;;, we have y,(ai, 0, x| —1)=h%, and
therefore |y,(zi, 0, |2y — 1) =gi;. Now, it follows from the decomposability of
descendances that, for all j, we have

iy+i| = (8" (1) |—|Yg(ai1’” [@g,] — 1) |+|'}’J(7i1,|711|_1 [@3])]

and then, for all j greater than or equal to py, fg (i, +J) = [%i,+j] =i + 1, which is
inconsistent with the hypothesis (P 2.1) on infinite growth.

3.1.3. The apical cell is never in the stationary state

This is a direct consequence of §3.1.2. (effectively, once in the stationary
state, the apical cell will never divide again).

3.1.4. For i sufficiently great, x; comprises an initial stationary section of which
length tends lo infinity with i

For all 7, let r; ( = 0) be the greatest integer such that the section of x; delimited
by 0 and 7, is stationary ; i.e. T'(x;, 0,7;) = k% and T(x;,r;,r;+ 1) #h (we note that,
the apical cell never bemg in the state A, we have ;< |z;[). It follovss flom the
stationarity of 4 that, for any integer p (= 0), we obtain, y,(;, 0,7,) T(l, p 0573)
= ki, and therefore »;, , > r;: the sequence with r; for its general tel m is ther et01e
increasing (i.e., if "> ¢, then », = 7;). In order to show that 7, tends to infinity
with i, we are going to establish that, for all integers 7 (=0), there exists 7',
strictly greater than ¢, such that », >r. Thus, let 7 be fixed, and let <" be an
integer, strictly greater than ¢, for which the length of the filament has just
increased (that is, |x, | < |2.|): such an " necessarily exists by virtue of the
hypothesis of infinite growth. Then we distinguish between two cases : either

(i) 7 = || = 1 (i.e. a;- deprived of its apical cell is a stationary filament), then
T 2 |Tp_g| >Tpw_y =15 OF

(ii) 7 < |} — 1. Letj=ry+1;T'(x;,j—1,7) is the first term of a; non-equal
to A, and we know that (using the notation of §3.1.1.) ?’p;-,-(xi"j —1,7)=h"j; then
it follows that

T(xi'-yp‘w;” )”+q11 T("ll +p~ ! T(11+p~9 1$)11~q ))

L d . o L.
_h : Vur,-('z"v-]_ 1, 7)="hre+ars

therefore

Titpp; 2 Vet Qi > T 27

Thuq the stated property is well satisfied, with i’ equal to 7"" in one case, and to
i’ +py; in the other.

3.1.5. Minimal expression of the property (P 2.2) : stationary outcome

We are going to establish that (P 2.2) is equivalent to the following property :

(P2.2") There exists p such that the descendance of order p of the section
of the axiom x, delimited by 0 and |2, — 1 is stationary ; for all 1,
such that, in the transition from i—1 to 4, the apical cell divides
(iLe. |p(i_y, [%;4] —1,|%;41])]|=2), there exists p’ such that the
descendance of order p’ of the sub-apical cell of w; (i.e. y,,.(x;, ;| — 2,
|a;] — 1)) is stationary.
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It is clear that (P 2.2) implies (P 2.2"). Conversely, let us suppose that (P 2.2")
is satisfied and let us prove, by induction on ¢, that, for all 7, the descendance of a
sufficiently high order of T'(a;, 0, |2;| — 1) is stationary. The first part of (P 2.2')
expresses this property for i=0. Let us suppose that it is satisfied for i —1:
then two cases may occur:

(i) At step ¢ — 1, the apical cell does not divide : then for all p, y,(«;, 0, [a;] 1)
=yp1(®; 1,0, [2; ;| — 1) and the property is obvious.

(i) At step ¢—1, the apical cell divides: then, for all p, y,(x; 0,2, —2)
=¥p1(®; 1,0, [2; 4| — 1) : furthermore, it follows from the property of decompos-
ability of descendances that, y,(x;0,[x;|—1)=y,(x;0, [2;] = 2)y, (@, || -2,
|2;| —1); therefore y,(x;,0,|x;/—1) is the product, with respect to the con-
catenation, of two filaments which are both stationary for sufficiently high
values of p.

3.2. Growth function of some special S, systems

For all 7, let «;" be the ® final non-stationary section * of z;; that is to say,
with the notation introduced in §3.1.4., we have x;=~A"xz,. This section a;" is
not empty, because the apical cell is never in the stationary state % ; we are going
to look for the form of the growth function associated with two particular cases
of S, systems.

3.2.1. Particular case of S, systems with a stationary outcome bounded in time

We consider here S, systems which satisfy the following property (using the
notation introduced in §3.1.1.):

(P 3) There exists a strictly positive integer M, such that, for all i, p,< M ;
(it follows from the equality p;=sup(p;.....P; |z 1) that p,< M is equivalent
to: for all j, such that 1 <j<|a;| -1, p;; < M).

S, systems which possess the property (P 3) are termed S, systems.
(a) Let us prove that, for such a system, we have: for any i> M, |a;/| <23
(We are actually going to prove that, for all i, we have 2/, ,,| <2%.) Effectively,
it follows from the property of decomposability of descendances, that :

T = (8)Y() = yu(;, 0, |??i|_— Dyar(@i, |2 = 1, [i])
= hiyy (|2 — 1, |x;])
therefore, we obtain |';, ;| < |y (2, |2,/ — 1, |2;])| ; now, the descendance of order
M of a section of length 1 is, according to (P 1.1), of maximum length 2¥.  There-
fore, we obtain [2';, ;,| <2M.

(b) Form of the growth function.

Let us first note that if two filaments », and », are such that v, =A%1w and
vy =h*2w, with s, and s, greater than or equal to m, then, T(7,,s, +i— 1,8, +m
+n+1) and T(%y, 8, +1— 1,8, +m +n+1) coincide for all 7 such that 1<i<|w|
(where #, and 7, are the extensions of v, and v, defined in §2.2.). Now we have

yi(on ol = wl, o)) = [T 8(T(7y,8+i—1,8,+m+n+1))

1<wi=|wl|
and likewise
Y1(e, [0a] — W], [0s]) = n (T (Py, 85 +1— 1,8 +m+n+1))

1=<i<|wl
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Therefore,
y1(V1, (V1] = (], [0,]) = y1(vy, [0 — |0], [v,])
Let us denote by w this last sequence ; it follows that
§8'(vy) =k 1™ and §'(v,) = h*20™

Thus, we prove by induction that, for all /, there exists w® such that,
(8")(v,) = A" 1® and (8")(v,) = h*20®

Then we note that, since the alphabet 4 is finite, there is only a finite number
of filaments of length lower than or equal to 2% ; then it follows from §3.1.4. and
§3.2.1. (@) that we can find two integers, i, and ¢,, satisfying

1y > 1, (let us call p the difference 7, — 1) ;

1= ;

4y > 39 = m (let us note that s =7y —ry);

'y =2"i, (let us call this sequence w).

Therefore we have x;, = h%igw and Tigep = h'igtsw, and then there exists w® such
that (8')"(xiy) = hiow™ and (8")"(w; ;) = io**w®; in particular, we have w®=w.
Now, (8")P(ig) =+, = Wio™*w ; therefore, w¥ =h*w, and it follows that: ; .,,
=(8")P(wiyyp) =Hig**w. Thus we prove by induction that, for any integer k,
we have

Xy kp = W0 *ow
and, for all /, such that 0<l<p,

Tig+kp+1 = hrioirksw(l)
Therefore,
S (to+ kp) = [ 1 pp| = |w]| + 1, + ks

and, if 0<l<p, fSa,(i0+kp+l)= |w®| +7;,+ks. In other words, we have, for
any n > tg, fs_ (1) = (s/p)n + (rig — (s/p)iy + lw®)|), where 7 denotes the class of con-
gruence of n — iy, modulop (i.e. 7 is the unique integer such that 0<% <p, and
n —1,—n is a multiple of p).

Thus, a one-dimensional array of cells, of which the type of development is
assumed to fall under the class of PD(m, n)L systems of type S,., will have, from
some stage of development onward, a growth function equal to the sum of a
linear function with a strictly positive slope, and a periodic function.

3.2.2. Particular case of S,-systems without influence of context on the right

We consider here PD(m, 0)L systems of type S, (not necessarily satisfying
(P 3)); such systems are called S,. systems.
(a) We are going to prove that, after a certain time step, two distinct steps for
which the first non-stationary element is the same, have necessarily initial
stationary sections of distinct lengths.

To prove that, let us suppose that there exist i, and i, (distinct) such that a;,
and 2; both have the same initial section of length » + 1, namely A’a where a # h
(therefore r;y=r;; =r, and we assume that »>m). Since the sequence with 7,
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for its general term is increasing, we have necessarily, for all i such that i, <i <i,,
;=7 (and then, in particular, r;,,, =r). Moreover, r being greater than or equal
tom, and n being equal to 0, we obtain T(&sg 7,7+ 14+m) =T (&, 7,7 + 1 +m)=h"a
and then, y(xy), 7, 7+ 1) =y(2; 7.7+ 1), This common filament (of length 1 or 2)
has, since 4, =7, a first element distinet from 4 ; let us denote it by a iy and
#i,+1 have therefore the same initial section of length »+ 1, namely A’a’ and in
particular, r;, ., =r. Thus we prove by induction that after the step i, the
sequence with 7; for its general term would be constant, which is impossible.

(b) The alphabet A is finite ; let K be the number of its elements. Therefore, if
i’ and " are two steps the difference of which is greater than or equal to K — 1,
there exists, at least, a pair (iy,¢,) such that i’ <4,<i,<i", for which the first
non-stationary elements are the same; then it follows from §3.2.2. (a) that if
= m, we have r;, >r;, and then, a fortiori, ry > r;.

Therefore the sequence with 7; for its general term admits as its lower bound
an affine function (x—>ox + B) with a strictly positive slope (actually, we can take
a=1/K —1); the same holds true with respect to the function [s,~ (Lt usnote
that if the sequence with |z;'| as its general term should be bounded, we should
again have the situation of §3.2.1., that fg , is the sum of a linear function and a
periodic function.)

Thus a one-dimensional array of cells, of which the type of development is
assumed to fall under the class (S,.) of PD(m, 0)L systems of type S,, will have a
growth function which admits as its lower bound an affine function with a
strictly positive slope.

4. Concluding remarks

T'wo results have been obtained with regard to the growth function associated
with two particular cases of L systems of type S,. The result dealing with
systems of type S, is essentially of theoretical interest in the much investigated
field of growth functions of L systems ; in particular, it shows that a PD(m, 0)L
system of type S, cannot have a growth function of logarithmic type.

The result dealing with systems of type S,. leads to some remarks of a bio-
logical nature. We have shown that the growth function associated with
systems such as S, is the sum of a linear function with a strictly positive slope,
and a periodic function. It is interesting to note that among all possible com-
binations of growth curves possessing the preceding property, many of them have
necessarily the graphical aspect of growth curves with successive ¢ platforms’
because of the necessarily increasing nature, in a broad sense, of the growth
curve and through its periodic component. This kind of growth is very typical
and often encountered experimentally. The elementary model considered here
therefore enables us (without losing sight of the restrictive aspect of a develop-
ment only considered in a cellular array) to associate a type of growth curve
often met with a frequent type of development. Furthermore, this model
shows, certainly very schematically, a possible explanation of certain periodic
phenomena : in fact, we have shown that in the case of systems of type S, it is
the finite nature of the set of discrete cellular states which originates the periodic
component of the growth curve.

On the other hand, the same results might have been obtained for systems
showing an analogous type of development, for instance the ones where a
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generating layer of cells gives respectively, on the left and on the right, two
distinet tissues.  Furthermore, in the case of a choice of unit not defined as the
cell, the results obtained would have been unchanged if we had chosen a maximum
divisibility greater than two (see (P 1.1)).
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